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Abstract

The results of empirical studies aboutn causality among sovereign bonds could be biased, since its use only

some bonds, depending on the maturity, or analyze bond market indexes; by contrast, we test causality

in-mean and in-variance on full interest rate curve. For that, we propose a method for estimating the curve

factors (Nelson-Siegel) avoiding multicollinearity, and then we study asymmetric causalilty among them.

On a daily sample of sovereign bonds market prices (France, Germany, Italy, Spain, Switzerland, UK and

USA), we found that USA (long-term) and Germany (short-term) are main drivers of causality in-mean.

The causality in-variance results shows that the effect is miostly in the EMU area, highlighting Spain as the

main driver.
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1. Introduction

The recent financial crisis has revealed the existence of strong connections among different markets and

assets. This is most evident in the case of sovereign debt, where its special nature, as key investment in

many portfolios and financial institutions,has involved that the regulator introduces in the stress tests the

relationship among the behavior of different sovereign bonds. Besides, given the high volume of sovereign5

debt issues and its characteristics, in the financial literature there is an abundant number of studies analyzing

the integration between sovereign debt markets, even more so since the birth of the EMU area (see Ehrmann

et al. (2011)).

In this context, we would highlight empirical evidence found by previous works, such as: nonstationarity

of a long-term yield (Gómez-Puig & Sosvilla-Rivero (2013) or Sibbersten et al. (2014)); heteroskedasticity,10

causality in-variance and volatility-spillover (Laopodis (2004); Christiansen (2007); Li et al. (2008); Babalos

et al. (2015)); and asymmetric causality (Beirne & Fratzcscher (2013); Caporin et al. (2013); Babalos et al.

(2015)), mainly in the case of bad news. It is noteworthy that we have not found any work that includes all

these features to analyze causality in the bonds market, for example Caporin et al. (2013) use a regression

quantiles to estimate asymmetry but does not consider causality in-variance, or Babalos et al. (2015) indicate15

that long-term yields are stationary unlike the rest of literature.

Regarding the methodologies used in the study of causality among financial variables in-mean and in-

variance, there are two approaches, on the one hand, the approach using multivariate models as Vector Au-

torregresive and Multivariate Generalized Autorregresive Conditional Heterokedasticity or V AR-MGARCH

models (Weber (2010)); and the other that uses Cross Correlation Function or CCF (Cheung & Ng (1996);20

Hong (2001); Qadan & Yagil (2012)).

From Cheung & Ng (1996) we know that CCF is robust against non-symmetrical and leptokurtic behav-

ior, usually in financial data. Also, Pantelidis & Pittis (2004) showed that simultaneously test the causality

in-mean and in-variance is not feasible since, the first results condition the second ones. In addition, the

computational complexity for a multivariate GARCH increases when individual distribution of each series25

or/and the univariate model GARCH fitted are different. González (2016) implements an analysis of causal-

ity in-mean and in-variance, which in a first stage, analyzes and models the stylized facts of data, and later,

on standardized residuals, using the Wald test, he checks the causality asymmetric. In this line, our aim

is to determine whether a shock on the sovereign bonds involves an asymmetric effects on the other bonds,

that is, if the effects are the same when the movements are up and down.30

Another issue to review is the lack of homogeneity in the analyzed samples to test the bond market

causality. There are works using only a few references as: prices or yields of long-term (Dungey et al. (2006);

Gómez-Puig & Sosvilla-Rivero (2013); Sibbersten et al. (2014); Babalos et al. (2015)); prices or yields of short-

term (Laopodis (2004)); or spreads on another reference asset. Others papers use bond indexes (Christiansen

(2007); Ciner (2007); Li et al. (2008)); and others study Credit Defaults Swap for some maturities (Beirne35

& Fratzcscher (2013); Caporin et al. (2013); Groba et al. (2013); Gorea & Radev (2014)) but in this case,

because its objective is to analyze mostly credit risk. So the main problem of previous works is that sample
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is incomplete, since not all references traded daily on the market, independently of maturity, are used.

Then, to make our study feasible and given the dispersion of maturities and continued emissions, we must

perform the analysis of causality in-mean and in-variance not on specific bonds, but on the daily interest40

rate curve obtained from market prices of all references traded. In this regard, and in order to correctly

interpret the results, we have to consider two preliminary issues. On the one hand,it is necessary that the

factors explaining the curve have a clear and common meaning to all bonds (that would restrict the use of

factor decompositions that do not allow to identify the factors); and on the other, these factors have to be

independent of each other, because otherwise we could not identify the causality for the same type of factor45

from different curves.

A standard model use to value and analysis the sovereign bonds is Nelson & Siegel (1987); for which

Coroneo et al. (2011) found that is free arbitrage. This approach has already been applied by Afonso &

Martins (2012) with the aim to study the dynamic relation between fiscal developments (government debt

and the budget deficit) and the shape of the sovereign yield curves for the U.S. and for Germany. For our50

purposes, the problem is the model estimation. In this regard there are two ways to study the parameters.

On the one hand, in serial time, which is called dynamic approach (Diebold & Li (2006); Koopman et al.

(2010)), but it carries the disadvantage of fixing a priori the behavior of the parameters. And secondly,

in cross-section (see a comparative study on De Pooter (2007)). Additionally, the method to estimate the

parameters is also double, since the model is not linear. This has been solved in two ways in the literature:55

either estimating all parameters together by techniques of nonlinear optimization, because the optimization

function is not convex; or previously estimating the nonlinear parameter model (even setting its value), and

then estimating the rest by least squares.

There are several drawbacks in a joint estimation such as: the outliers, which forces to delimit the

intervals where we run the optimization problem, the treatment of multicollinearity between the regressors60

and the sensitivity to initial values (Gimeno & Nave (2009)). Meanwhile, the two-stage estimate (Gauthier &

Simonato (2012)) is not absent problems: the multicollinearity, which increases when the nonlinear parameter

is fixing and, the heterogeneity of the references in each estimation date.

As our aim is to obtain the explanatory (and independent) factors of the interest rate curve without

setting a priori their behavior, we follow a two-step process that guarantees that such factors or regressors65

are independent of each other. For that, we propose a estimation methodology similar to Annaert et al.

(2013).

In short, our goal is to study the asymmetric causality in-mean and in-variance on the interest rates curves

of sovereign bonds, for which we must first estimate the parameters that define it, but under the assumption

of independence among the explanatory factors of the curve and, subsequently we use a methodology CCF70

multivariate on standardized residuals, as González (2016), to test if there are causality between these

parameters from different curves.

The rest of the paper is organized as follows: section 2 describes the methodology used; section 3

analyzes the data and to check the validity of the proposed approach; section 4 shows the results for the test
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of causality. The paper ends with the main conclusions of the study.75

2. Methodology

The methodology used is two-stage; first, we estimate the parameters that fitting the interest rate curves

and, secondly, after a preliminary analysis of the results, we test the asymmetric causality. Subsequently

both phases are described.

2.1. Estimation of the Nelson-Siegel model80

We write the Nelson-Siegel model as follows, for purposes of estimation:

yi,j,k = β0,i,j + β1,i,jX1,i,j,k + β2,i,jX2,i,j,k + ϵi,j,k (1)

Where i = 1, · · · , N is the issuer of sovereign debt; j = 1, · · · , T is date; k = 1, · · · ,Ki,j is each bond of

emisor i traded on date j; yi,j,k is the yield of bond k, issued by i and, estimated from market bond price

on date j and its characteristics (coupon and maturity). In equation(1), the regressors X are defined as:

X1,i,j,k =
1− exp(− ti,j,k

τi,j
)

ti,j,k
τi,j

X2,i,j,k = X1,i,j,k − exp(− ti, j, k
τi,j

)

(2)

Where ti,j,k is the time remaining until the maturity of the bond k, on date j and the sovereign issuer

i. As can be seen, by construction, there is collinearity between regressors. Furthermore τ is the nonlinear

parameter of the model.

In this model, each parameter is a factor of the interst rate curve:

• β0: the constant shows the level of interest rate long-term or long-term factor.85

• β1: is the slope (or steepness) of the curve, if β1 < 0 is downward and, else if β1 < 0 is upward. It

represents the short-term factor.

• β2: is the curvature, if β2 > 0 is hump, else if β2 < 0 is trough. It shows the medium-term factor.

• τ : its inverse is the speed with which forward rates converge at long-term rates, thus, for smaller value

(always positive), the speed of convergence is higher. It represents the form (shape) of the function90

and, it shows the maturity for that the medium-term factor takes the maximum value.

Diebold & Li (2006) found that multicollinearity, as measured by the correlation between the regressors

model, is related to τ . So, in order to achieve that the regressors are i.i.d. and taking into account the effect

of τ on this relationship, in this paper we propose the following procedure to estimate the Nelson-Siegel

model:95

1. For the date j and the issuer i, we calculate the yield (continuous compounding) y from each bond

traded k.
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2. We estimamos τi,j such that X1,i,j,k and X2,i,j,k are linearly independent. So, if Σ is correlation

matrix of regressors (X1, X2) then, we seek τ to maximize its determinant: max{det(Σ)}. Note that

the maximum value is reached when the correlation is zero; in this case, there is no collinearity and100

factors are independent.

3. Replacing optimal τi,j in equation(2) we obtained the regressors uncorrelated and, we estimated β0,i,j ,

β1,i,j and β2,i,j by least squares on equation(1).

4. Repeat steps 1 to 3 for each date j = 1, · · · , T and each issuer i = 1, · · · , N .

2.2. Asimmetric causalilty test105

Firslty, we analize the time series of Nelson-Siegel model parameters, we check stationarity, autocorre-

lation and heterokedasticity and, according the statistics test, we model each parameter. So, if λi,j is any

stationary transformation of parameters (β0, β1, β2 or τ) then, we fit a univariate AR-GARCH model, for

example for one lag, we estimate this expression:

λi,j = γ0,i + γ1,iλi,j−1 + ei,j

ei,j ∼ i.i.d.(0, σ2
i,j)

σ2
i,j = α0,i + α1,ie

2
i,j−1 + α2,iσ

2
i,j−1

(3)

Once the univariate suitable processes are estimated, it is feasible to extract the standardized residuals

(z). In the second stage, we determine the effects on the set of variables using a V AR model. Thus, for

example, if the lag optimal by informtation criterion (AIC) was one (to simplify) then, the expression is:
z1,j
...

zN,j

 =


0 · · · ω−

1,N,1

...
. . .

...

ω−
N,1,1 · · · 0

 ·


δ1,j−1 · z1,j−1

...

δ1,j−1 · zN,j−1

+


0 · · · ω+

1,N,1

...
. . .

...

ω+
N,1,1 · · · 0

 ·


(1− δ1,j−1) · z1,j−1

...

(1− δ1,j−1) · zN,t−1

+


u1,j
...

uN,j


∀i = 1, · · · , N

δi,j =

1 if λi,j ≤ 0

0 otherwise

(4)

The expression (4) is non-constant and non-autoregressive since these characteristics are in the mean

equation(3). The variable δ depends on the parameter daily variationsr (up or down movement of explanatory

interest rate factor), but not the shock sign (error term in the univariate model), to avoid the influence of the

adjusted univariate model on the causality test. Then, in equation(4), the following hypotheses are tested

as González (2016):110

• If the variable i does not cause in-mean the variable s, then H0 : ω−
i,s,1 = ω+

i,s,1 = 0.

• If the variable i causes in-mean the variable s, then the asymmetric causality in-mean is tested as:

Hsym
0 : ω−

i,s,1 = ω+
i,s,1.
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• Finally, if the variables i and s cause each other, we check whether the bidirectional effects are the

same: H∗
0 : ω∗

i,s,1 = ω∗
s,i,1. Where ∗ is (+) or/and (−).115

From the results of expression(4), and to test the causality in-variance without the impact of the possible

causality in-mean (see Pantelidis & Pittis (2004)), a new variable (η) is defined as:

∀i = 1, · · · , N

ηi,j =

z2i,j − 1 if ∀s ̸= i, ω∗
i,s,t = 0(nocausalityin−mean)

u2i,j − 1 otherwise

(5)

The residual η is non-autoregressive, since this characteristic is in the variance equation(3) and, it is not

constant because the original residuals (z) are standardized (zero mean and unit variance). Newly, we use

a V AR model to estimate the asymmetric causality in-variance as in equation(4). To simplify, we write a

V AR(1) model:
η1,j
...

ηN,t

 =


0 · · · ψ−

1,N,1

...
. . .

...

ψ−
N,1,1 · · · 0

 ·


δ1,j−1 · η1,j−1

...

δ1,t−1 · ηN,j−1

+


0 · · · ψ+

1,N,1

...
. . .

...

ψ+
N,1,1 · · · 0

 ·


(1− δ1,t−1) · η1,j−1

...

(1− δ1,t−1) · ηN,j−1

+


υ1,j
...

υN,j


∀i = 1, · · · , N

δi,j =

1 if λi,j ≤ 0

0 otherwise

(6)

In this case, the hypotheses are:

• No causality in-variance: H1 : ψ−
i,s,1 = ψ+

i,s,1 = 0.

• No asymmetric causality in-variance: Hsym
1 : ψ−

i,s,1 = ψ+
i,s,1.

• If there is bidirectional causality in-variance, the effects are the same: H∗
1 : ψ∗

i,s,1 = ψ∗
s,i,1.

Both expressions (4) and (6) are estimated by Full Information Maximum Log-likelihood (FIML) pro-

cedure, i.e. maximizing the follow log-likelihood function:

ℓ0 = −TN
2

· log(2π) + TN

2
log(|Ω−1|)− TN

2

Ω =
1

T
·
[
r1 · · · rN

]
·


r1
...

rN


(7)

where r is the residuals vector for each variable. Thus, any hypothesis is tested with an LR test (log-

likelihood ratio) as:

LRm−s = −2 · log ℓm
ℓs

∼ χ2
m−s (8)

Where (m-s) is the number of restrictions for a χ2 distribution.120
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3. Data: Description and Econometric Modeling

In order to check whether the causality found by the previous studies, above mentioned, during the

recent financial crisis it still remains, our data sample consists of daily prices closing from 1 January 2010

until 31 December 2015, both included. From Bloomberg and, since the evidence of previous work found

causality in EMU zone, we have selected the sovereign bonds issuers for major economies within this area125

(France, Germany, Italy and Spain); additionally, we include United Kingdom (UK), this is due to its special

relationship with this area; United Stated of America (USA) is included too, as a consequence of its weight

in the world economy. Finally, Switzerland (Swiss) is included as a control variable, since it is a country

geographically close to the EMU zone (to avoid problems of asynchrony with prices) with a good financial

health.130

First, we have estimated the Nelson-Siegel model to fit the daily interest rate curves. The estimates

were made following four methods. For three of them, we have estimated first the nonlinear parameter (τ),

as it is described above, and then the linear parameters (β0, β1, and β2) are estimated by three different

methods: Ordinary Least Squares (OLS), Generalized Least Squares (GLS) and Non-linear Least Squares

(partial NLS) using nonlinear optimization Simulated Annealing (SA). Finally, the fourth estimate is a135

NLS applying SA, where the start values of parameters are the values obtained previously in partial NLS.

Table(1) shows the data used, the computational time estimation of each method and root mean square

error percentage, both on yield and on observed prices.

Table 1: Nelson-Siegel estimation results

Method / Data Results France Germany Italy Spain Swiss UK USA

Total references 76 52 121 64 29 56 523

Total observations 78,934 57,477 106,595 56,285 32,236 60,443 407,739

Max references by day 60 40 85 44 23 42 307

Min references by day 41 29 39 28 6 36 192

OLS Time 35.5707 26.6033 51.5757 12.5891 11.8547 30.5461 117.8603

RMSE on rate 0.75% 0.12% 0.49% 0.15% 0.09% 0.17% 0.10%

RMSE on price 9.80% 3.04% 5.31% 2.27% 2.71% 2.97% 2.94%

GLS Time 37.0313 32.8537 57.2076 20.3317 18.3207 34.3953 121.4946

RMSE on rate 0.78% 0.11% 0.36% 0.14% 0.08% 0.15% 0.08%

RMSE on price 8.40% 3.04% 5.25% 2.26% 2.71% 2.96% 2.29%

NLS partial Time 43.0313 38.8537 63.2076 26.3317 24.3207 40.3953 127.4946

RMSE on rate 0.81% 0.14% 0.51% 0.16% 0.10% 0.17% 0.10%

RMSE on price 10.24% 3.04% 5.65% 2.27% 2.70% 2.95% 2.94%

NLS Time 50.0313 45.8709 70.2364 33.3397 31.3325 47.4107 134.5520

RMSE on rate 0.90% 2.37% 3.06% 0.81% 3.28% 2.10% 4.10%

RMSE on price 9.69% 2.67% 5.23% 2.09% 2.09% 2.44% 3.65%

Note: Time is the computation time for a standard PC expressed in minutes and RMSE is Root Mean Square Error in percentage.

First, it is noteworthy that USA is the issuer with the highest number of references, followed by Italy

and France. About the results, we found, as expected, that as the method becomes more complex or more140
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parameters involved, the computation time is higher. As regards the degree of fit, except in the case of

French bonds, NLS better fits over prices than on yields. Among the methods, the best adjusted on prices

and yields is GLS and, therefore we take the parameters obtained by this procedure. But, to ensure that it

is a right choice, we compare, in table(2), the adjusted R2 from OLS and GLS.

Table 2: Adjusted R2

Method Adjusted R2 France Germany Italy Spain Swiss UK USA

OLS Max 0.7009 0.9509 0.9292 0.9986 0.9968 0.9958 0.9978

Mean 0.5371 0.9744 0.7909 0.9821 0.9710 0.9759 0.9858

Min 0.0761 0.5928 0.0022 0.5666 0.5075 0.3024 0.6343

GLS Max 0.9992 0.9999 0.9991 0.9999 0.9999 0.9995 0.9999

Mean 0.8087 0.9999 0.9940 0.9998 0.9994 0.9942 0.9997

Min 0.3974 0.9844 0.7486 0.9802 0.9385 0.9849 0.9963

As shown the results are superior to GLS. Finally, in order to justify this difference, we check if it is145

caused by a possible heterogeneity of the data, and the corresponding effect on OLS results. For this, we

estimate (see table-3) the White test on the OLS results.

Table 3: White test

OLS estimation France Germany Italy Spain Swiss UK USA

Max 47.522 [**] 39.452[**] 47.856 [**] 37.863[**] 22.994[**] 37.191[**] 158.448[**]

Mean 11.698[**] 16.773[**] 11.155 [**] 15.865[**] 9.773[**] 17.464[**] 73.779[**]

Min 2.014 2.761 2.339 0.340 0.253 2.730 5.778[*]

Note: [∗∗] and [∗] mean that the null hypothesis of non-heteroskedasticity is rejected at 1% and 5%, respectively.

As seen in table(3), there is an obvious problem of heteroskedasticity that justifies the use of GLS.

Finally, in tabe(4), we show the nonlinear parameter (τ) estimated individually, using the methodology

proposed, and jointly with others parameters by NLS. The τ values are accompanied by the corresponding150

correlation between the regressors, to check the collinearity between regressors.

Note that NLS estimations show multicolinearity and higher variability than GLS estimation, and even

some values are absurd.

The statistics of parameters estimated by GLS are in table(5) and, in figure(1), we plot the parameters

obtained for US bonds.155

In table(5), note that, except for τ , the other parameters are not stationary in levels. So, in order to

check the causality, previously we have to make a transformation (first difference) stationary and analyze

the behavior of these variations.

As seen in table(6), the parameters variations (or in level, where it is appropiate, τ) are not Gaussian,

are stationary and have autocorrelation and heteroskedasticity. Therefore, we have to fit a model that160

allows us to correct these characteristics before studing causality. Following González (2016), we have tested

different models (from FIEGARCH to FIAPARCH, with and without effects on mean equation) and,we have

selected the model based on the information criterion AIC, but considering the above characteristics, and
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Table 4: Parameter τ and collinearity

Method GLS NLS

Countries Parameters Max Mean Min Max Mean Min

FRANCE τ 4.1530 3.3143 2.4653 84.4453 13.3018 0.0942

Correlation 0.0000 0.0000 0.0000 0.9893 -0.4874 -1.0000

GERMANY τ 4.2923 3.3608 2.2828 25.5365 3.9091 0.0279

Correlation 0.0000 0.0000 0.0000 1.0000 0.1132 -0.9908

ITALY τ 3.1218 2.4826 2.0442 75.7670 32.5275 0.0116

Correlation 0.0000 0.0000 0.0000 0.9977 -0.4000 -1.0000

SPAIN τ 4.4386 2.4947 1.9706 28.3911 2.4735 0.0242

Correlation 0.0000 0.0000 0.0000 1.0000 0.1498 -0.9929

SWISS τ 4.3101 3.4800 1.6333 44.0759 3.0982 0.0127

Correlation 0.0000 0.0000 0.0000 1.0000 0.3087 -0.9964

UK τ 7.3052 4.5483 3.6816 19.6061 5.5718 0.1944

Correlation 0.0000 0.0000 0.0000 0.9906 -0.0674 -1.0000

USA τ 2.0449 1.8011 1.6025 2.3030 0.6303 0.0304

Correlation 0.0000 0.0000 0.0000 0.8662 0.5381 -0.1891

Table 5: Statistics of parameters by GLS

Countries β0 β2

min mean max std. dev ADF min mean max std. dev ADF

France 0.0108 0.0346 0.0452 0.0069 -1.5230 -0.0591 -0.0173 0.0334 0.0214 -2.4301

Germany 0.0068 0.0308 0.0439 0.0080 -1.4183 -0.0475 -0.0200 0.0178 0.0146 -2.5223

Italy 0.0217 0.0480 0.0663 0.0093 -0.6764 -0.0771 -0.0140 0.0605 0.0249 -2.3361

Spain 0.0220 0.0512 0.0720 0.0108 -0.8811 -0.0806 -0.0138 0.0651 0.0244 -2.5186

Swiss 0.0045 0.0179 0.0291 0.0053 -1.7939 -0.0317 -0.0127 0.0111 0.0093 -2.5579

UK 0.0228 0.0376 0.0485 0.0061 -0.7408 -0.0449 0.0023 0.0513 0.0179 -2.3475

USA 0.0233 0.0366 0.0522 0.0077 -1.9373 -0.0678 -0.0400 -0.0082 0.0138 -1.0857

Countries β1 τ

min mean max std. dev ADF min mean max std. dev ADF

France -0.0527 -0.0352 -0.0112 0.0076 -1.9076 2.4653 3.3143 4.1530 0.3419 -3.6781

Germany -0.0455 -0.0304 -0.0079 0.0076 -1.8867 2.2828 3.3611 4.2923 0.3261 -4.0220

Italy -0.0552 -0.0393 0.0019 0.0091 -2.4473 2.0442 2.4827 3.1218 0.1750 -4.2607

Spain -0.0637 -0.0418 -0.0103 0.0086 -2.4662 1.9706 2.4947 4.4386 0.3423 -3.5732

Swiss -0.0311 -0.0208 -0.0019 0.0043 -1.8023 1.6333 3.4766 4.3101 0.4037 -4.7353

UK -0.0482 -0.0378 -0.0190 0.0070 -1.0671 3.6816 4.5483 7.3052 0.3740 -3.8042

USA -0.0529 -0.0347 -0.0189 0.0085 -1.9520 1.6025 1.8011 2.0449 0.0982 -3.8258

Note: ADF is Augmented Dickey-Fuller stationary test, with critical value -3.46 an -2.86 at 1% and 5% of confidence level,

respectively.

also ensuring that the variance was stationary. Table(7) shows that in all cases, the selected model for the

variance is a GARCH(1, 1) with a t-Student or Normal distribution and, sometimes accompanied by an165

AR(1) model for the mean equation.

Note that after fitting univariate models, the residuals are not autocorrelated and heteroskedastics. It

also, we found that the variations of linear parameters are not Gaussian, whereas τ , estimated under our
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Figure 1: Parameters estimated by GLS for USA

proposal, has Gaussian residuals.

4. Results of Asymmetric Causality Tests170

Before analyzing causality, figure(2) shows the linear parameters estimated by GLS for France and

Germany. As seen, there is a clear similarity in their behaviors, which justify our empirical study.

First, we test assymetric causality in-mean on standardize residuals obtained from the above univariate

models. For this, we estimate a simultaneous equations by FIML. In table(8), we show the signficant

parameters.175

From the results of table(8), we observe that causality in-mean for all curve parameters is asymmet-

ric ,i.e., the causality effect has place for upward (+) or downward (-) factors movements, but not both.

Differentiating for each explanatory factor of interest rate curves, we conclude on causality in-mean the

following:

• Long-term factor (β0): USA is the most important driver, since it affects most countries and is not180

influenced by anyone. This influence only occurs when a negative shock in long-term rates arises,

leading to a decline in long rates of other countries. The area EMU effect is not evident in this factor,

except for bilateral and opposite relationship between Italy and Spain; for example, Germany is affected

by long-term factor decreases in France and USA, and the increases in UK. Finally, note that UK is

the most affected, even by EMU countries (France, Germany and Italy).185
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Table 6: Descriptive Statistics of parameters
countries France Germany Italy Spain Swiss UK USA

statistics ∆β0

min -0.00431 -0.00450 -0.00559 -0.00418 -0.00287 -0.00841 -0.00282

mean -0.09806 -0.14864 -0.12697 -0.08902 -0.11496 -0.08066 -0.13342

max 0.00616 0.00462 0.00474 0.00432 0.00325 0.00794 0.00277

std. dev 0.00061 0.00055 0.00088 0.00074 0.00050 0.00057 0.00063

skw 0.44162 -0.07656 0.20631 -0.11274 0.08616 -0.58388 0.14016

exc. Kur 10.54100 9.33380 4.34370 4.43710 6.77280 60.43100 1.48680

JB 7282.1 [**] 5671.5 [**] 1239.1 [**] 1284.7 [**] 2987.3 [**] 237770 [**] 148.98 [**]

ADF -23.98 [**] -24.58 [**] -28.12 [**] -23.43 [**] -27.57 [**] -26.18 [**] -23.93 [**]

ARCH 1-2 7.84 [**] 129.98 [**] 30.99 [**] 34.02 [**] 47.14 [**] 290.60 [**] 45.49 [**]

BP(5) on data 9.5123 8.79868 48.87 [**] 4.9415 72.25 [**] 81.39 [**] 18.71 [**]

BP(5) on sq 148.15 [**] 223.12 [**] 111.35 [**] 125.94 [**] 187.94 [**] 338.67 [**] 179.71 [**]

statitisc ∆β1

min -0.01324 -0.01059 -0.00733 -0.01187 -0.00501 -0.00626 -0.00474

mean 0.00001 0.00001 0.00001 0.00001 0.00002 0.00001 0.00002

max 0.00826 0.01069 0.01412 0.00951 0.01731 0.00745 0.00377

std. dev 0.00092 0.00093 0.00127 0.00141 0.00078 0.00086 0.00081

skw -2.43930 -0.29956 0.50592 -0.97056 6.41320 -0.13149 -0.21854

exc. Kur 40.75000 43.17400 13.26600 11.18500 153.62000 15.51000 1.88900

JB 1096200 [**] 1213400 [**] 11521 [**] 8388.1 [**] 1546700 [**] 15661 [**] 244.68 [**]

ADF -25.09 [**] -26.15 [**] -23.29 [**] -24.33 [**] -26.14 [**] -27.32 [**] -24.91 [**]

ARCH 1-2 99.75 [**] 135.06 [**] 43.40 [**] 77.96 [**] 52.43 [**] 61.08 [**] 51.82 [**]

BP(5) on data 53.13 [**] 86.48 [**] 6.49 16.25 [**] 28.13 [**] 150.07 [**] 36.89 [**]

BP(5) on sq 161.91 [**] 323.67 [**] 128.98 [**] 192.24 [**] 207.88 [**] 205.52 [**] 122.71 [**]

statitisc ∆β2

min -0.02582 -0.03133 -0.02397 -0.03797 -0.02209 -0.05645 -0.01301

mean -0.00003 -0.00003 -0.00002 -0.00003 -0.00001 -0.00003 0.00001

max 0.03553 0.03756 0.02624 0.02852 0.03020 0.05965 0.01554

std. dev 0.00285 0.00236 0.00407 0.00425 0.00310 0.00399 0.00181

skw 2.23770 2.16130 0.01562 0.41659 1.44970 1.10000 0.58668

exc. Kur 33.31100 81.55300 5.37460 13.32200 20.18700 69.75400 9.44820

JB 73521 [**] 4340800 [**] 1880.1 [**] 11596 [**] 27069 [**] 3169900 [**] 5899.5 [**]

ADF -24.95 [**] -29.41 [**] -27.43 [**] -26.08 [**] -34.39 [**] -27.95 [**] -27.26 [**]

ARCH 1-2 66.29 [**] 133.57 [**] 34.17 [**] 46.28 [**] 32.30 [**] 267.36 [**] 97.64 [**]

BP(5) on data 42.31 [**] 95.09 [**] 34.45 [**] 32.97 [**] 165.92 [**] 185.76 [**] 53.02 [**]

BP(5) on sq 122.71 [**] 234.55 [**] 103.07 [**] 113.91 [**] 229.97 [**] 331.56 [**] 158.82 [**]

statitisc τ

min 2.46530 2.28280 2.04420 1.97060 1.63330 3.68160 1.60250

mean 3.31430 3.36110 2.48270 2.49470 3.47660 4.54830 1.80110

max 4.15300 4.29230 3.12180 4.43860 4.31010 7.30520 2.04490

std. dev 0.34191 0.32611 0.17500 0.34230 0.40374 0.37398 0.09822

skw 0.03260 -0.52167 0.17120 1.33570 -0.21108 0.08164 0.39213

exc. Kur -0.57558 0.18568 -0.64905 1.64050 -0.43873 1.03780 -0.65930

JB 21.85 [**] 73.14 [**] 35.07 [**] 640.05 [**] 24.14 [**] 71.88 [**] 68.36 [**]

ADF -3.68 [**] -4.02 [**] -4.26 [**] -3.57 [**] -4.74 [**] -3.80 [**] -3.83 [**]

ARCH 1-2 17007 [**] 6354.1 [**] 8496.8 [**] 8212.8 [**] 5215.88 [**] 4961.6 [**] 10506 [**]

BP(5) on data 6952.37 [**] 6215.68 [**] 6375.65 [**] 6699.36 [**] 3039.4 [**] 6394.64 [**] 6504.70 [**]

BP(5) on sq 6963.67 [**] 6117.39 [**] 6330.55 [**] 6521.53 [**] 5372.15 [**] 6100.34 [**] 6539.90 [**]

Note: JB is the Jarque-Bera test.ADF is stationarity test. ARCH is a LM-test of heterokedasticity. BP is Breusch-Pagan test (lags)

on data (autocorrelation test) and square data (conditional heterokedasticity test). The null hypothesis is normality, non-stationarity,

non-heterokedasticity, non-autocorrelation and no conditional heterokedasticity, respectively. Thus [*] and [**] show that null

hypothesis is rejected to 5% and 1%, respectively.

• Short-term factor (β1): again note that UK is the most affected by the other countries. In this case

Germany is the driver with an influence in case of positive shocks in the short-term rates. Regarding

the EMU area, a bidirectional relationship appears in case of positive shocks between France and

Germany, and Italy over Spain.

• Medium-term factor (β2): this factor has the highest number of causal relationships, which are con-190

centrated mostly in the EMU area. There is a bidirectional relationship between Italy and Spain when

12



Table 7: Results of AR-GARCH model estimation

countries France Germany Italy Spain Swiss UK USA

parameters ∆β0

Const -0.0001 [*]

AR(1) -0.1212 [**] 0.0653 [*] -0.0961 [**] -0.0957 [**]

Cv x 106 0.0201 [**] 0.0104 [*] 0.0209 [*] 0.0325 [**] 0.0163 [*] 0.0325 [*] 0.0043 [*]

ARCH(1) 0.1605 [**] 0.1437 [**] 0.1808 [**] 0.1702 [**] 0.1341 [**] 0.2903 [**] 0.0361 [**]

GARCH(1) 0.8026 [**] 0.8380 [**] 0.8118 [**] 0.7951 [**] 0.8070 [**] 0.6105 [**] 0.9528 [**]

df Student 4.2074 [**] 4.2306 [**] 4.4631 [**] 4.1623 [**] 3.8587 [**] 4.174 [**] 10.4466 [**]

ARCH 1-2 2.5223 2.407 0.1162 0.4732 0.442 0.0165 1.9238

BP(5) on data 4.0311 4.0080 1.1155 4.1316 5.9039 6.3391 3.3096

BP(5) on sq 6.0850 6.407 1.5144 1.5998 7.5226 0.1081 4.2743

parameters ∆β1

Const 0.0001 [*]

AR(1) -0.0893 [**] -0.1317 [**]

Cv x 106 0.1726 [**] 0.0695 [*] 0.0208 [*] 0.1857 [*] 0.1252 [**] 0.3431 [**] 0.0080 [*]

ARCH(1) 0.3003 [**] 0.2588 [**] 0.1183 [**] 0.3388 [**] 0.2492 [**] 0.2556 [**] 0.0291 [**]

GARCH(1) 0.4937 [**] 0.6570 [**] 0.8814 [**] 0.6624 [**] 0.4925 [**] 0.6918 [**] 0.9581 [**]

df Student 3.6707 [**] 4.6974 [**] 3.5178 [**] 3.1298 [**] 3.5907 [**] 3.1254 [**] 10.8411 [**]

ARCH 1-2 0.3597 2.0879 2.904 0.4266 0.0083 1.4095 1.6963

BP(5) on data 3.9069 1.7283 4.4991 6.0985 3.3726 5.6211 4.3774

BP(5) on sq 0.9494 6.5469 7.8519 1.0792 0.0262 4.7103 6.1472

parameters ∆β2

Const -0.0002 [*] -0.0001 [**] -0.0002 [**] -0.0001 [**] -0.0001 [*]

AR(1) -0.0567 [*] -0.1223 [**] -0.1675 [**]

Cv x 106 1.5688 [*] 1.0612 [**] 1.2870 [*] 1.7433 [**] 0.7501 [**] 1.5224 [**] 0.0117 [*]

ARCH(1) 0.1415 [**] 0.2220 [**] 0.3010 [**] 0.3214 [**] 0.3229 [**] 0.1537 [**] 0.0142 [**]

GARCH(1) 0.7076 [**] 0.7508 [**] 0.6910 [**] 0.6718 [**] 0.6087 [**] 0.7785 [**] 0.9717 [**]

df Student 2.4180 [**] 3.4057 [**] 3.3285 [**] 2.6927 [**] 2.004 [**] 2.7443 [**] 4.6548 [**]

ARCH 1-2 0.0148 0.1587 1.166 0.352 0.2963 0.2895 1.6265

BP(5) on data 3.8661 3.9698 3.728 5.8764 5.8895 5.5217 5.4589

BP(5) on sq 0.2308 0.577 4.3221 1.2778 1.8184 3.5457 6.2653

parameters τ

Const 3.3969 [**] 3.5447 [**] 2.5234 [**] 2.5270 [**] 3.668 [**] 4.6006 [**] 1.7422 [**]

AR(1) 0.9705 [**] 0.8394 [**] 0.9612 [**] 0.9791 [**] 0.8460 [**] 0.9733 [**] 0.9702 [**]

Cv x 106 0.2547 [*] 0.2425[*] 0.1646 [*] 0.1447 [*] 0.1965 [*] 0.1518 [*] 0.1612 [*]

ARCH(1) 0.15024 [**] 0.2505 [**] 0.1918 [**] 0.3049 [**] 0.1185 [**] 0.2353 [**] 0.1354 [**]

GARCH(1) 0.7551 [**] 0.7274[**] 0.7427 [**] 0.7337 [**] 0.8764 [**] 0.7488 [**] 0.8018 [**]

ARCH 1-2 0.0843 0.2214 2.7502 1.1939 1.4176 0.0276 1.0997

BP(5) on data 0.2937 5.1410 5.3776 1.4618 4.2534 3.1766 3.9302

BP(5) on sq 6.6059 1.0679 4.8928 2.4665 3.4776 0.1052 2.0552

Note: Const and Cv are the constant in mean and variance equations, respectively. dfStudent is degree of freedom for t-Student

distribution. [∗∗] and [∗] mean that the parameter is significant at 1% and 5% confidence level, respectively.

shocks are negatives. It also highlights the causality in case of negative shocks of Spain over France,

Germany and UK.
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Table 8: Asymmetric causality in-mean

Causality sign France Germany Italy Spain Swiss UK USA

Causation countries Causality in-mean for ∆β0

France (+) -0.1366 [*]

(-) 0.1062 [**]

Germany (+) 0.1337 [*]

Italy (+) 0.1389 [**]

(-) 0.0825 [*] -0.1290 [*]

Spain (+) 0.0960 [*]

UK (+) 0.0789 [*] 0.0924 [*]

USA (-) 0.1136 [*] 0.1806 [**] 0.1271 [*] 0.1952 [**]

Causation countries Causality in-mean for ∆β1

France (+) 0.1386 [**]

Germany (+) 0.0971 [*] 0.1252 [*] 0.1949 [**]

Italy (+) 0.1394 [**]

Swiss (-) 0.0979 [*]

UK (-) -0.1104 [*]

USA (+) 0.1050 [*]

Causation countries Causality in-mean for ∆β2

France (-) 0.1085 [*]

Germany (+) 0.1022 [**]

Italy (+) -0.0881 [*]

(-) 0.1039 [*] 0.1013 [**]

Spain (+) 0.0975 [*]

(-) -0.1987 [**] -0.1088 [*] 0.1599 [**] -0.1356 [*]

UK (-) -0.0709 [*] -0.1233 [**] -0.0845 [*]

USA (-) -0.1073 [**] -0.1003 [**]

Causation countries Causality in-mean for τ

France (+) -0.0868 [**]

(-) 0.1842 [*] 0.1520 [*]

Germany (-) -0.1136 [**] 0.1127 [**]

Italy (-) 0.3035 [*] 0.3525 [**]

Spain (-) 0.1937 [*] 0.1440 [*]

Swiss (-) 0.1946 [**]

USA (+) 0.1787 [**]

(-) 0.5002 [**]

Note: From AIC criterion, we estimate a model with 1-lag. [∗∗] and [∗] mean that the parameter is significant at 1% and 5%

confidence level, respectively.
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• Decay factor (τ): in this case, the causal relations are mainly negative, that is, causality in-mean is

statistically significant when this factor decreases.195

Table(9) shows that causality in-variance is low, but for statistically significant cases, it is asymmetric.

Differentiating by factors we conclude:

• Long-term factor (β0): when this factor increases, there is causality in-variance from Spain to France

and from UK to Germany. However when this factor decreases, we observe causality in-variance from

USA to Italy.200

• Short-term factor (β1): France is affected by the volatility of Germany factor down shocks and Spain

up shocks. Finally, UK affects Italy when this factor decreases.

• Medium-term factor (β2): this factor, as happened with causality in-mean, has the highest number

of asymmetric causal relationships within the EMU zone. In particular, Germany and Spain are the

main drivers of causality. Note again the effect of UK on Italy.205

• Decay (τ): we observe an asymmetric causality (only with decay increases) bidirectional between Spain

and Italy, whose effects are the same (the same bidirectional effect hypothesis is not rejected: 2.087

Wald test with p-value 0.1492).

5. Conclusions

The financial literature has analyzed, repeatedly over time, the causality among movements in interest210

rates of sovereign debt. After the recent financial crisis, the studies find higher connections between interest

rates, mainly in the EMU area; also the results of several studies show that the cause-effect relationships

are not symmetrical. In this context, we have not found any work to analyze simultaneously the asymmetry

of causality in-mean and in-variance for the sovereign bond markets. Neither, we know studies on causality

for the full interest rate curve, not only on some maturities or indexes. As a result of this, this paper aims215

to analyze whether there is an asymmetric causality in-mean and in-variance for the full interest rate curve

of sovereign bonds; in particular, on a sample of the major economies of the EMU zone (France, Germany,

Italy and Spain), as well as a country with important relations with this area (UK) and, the main economy

of the developed world (USA). We have also added a country, as a control variable, given its sound financial

standing and its geographical proximity to the rest (Switzerland).220

For the study, we need to define a priori an interest rate curve model from which we identify the factors

i.i.d.; later to study the causality among these factors from different interest rate curves. Thus, within

the set of potential models, we selected the Nelson-Siegel model given its properties, but we made a first

contribution by a bi-stage estimation proposal, that avoids the usual problem of multicollinearity between

factors of the curve. Then, in a first phase we estimate the nonlinear parameter maximizing the determinant225

of the correlation matrix of the regressors and; in a second phase, we apply GLS to estimate the remaining
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Figure 2: Parameters estimated by GLS for France and Germany

Table 9: Asymmetric causality in-variance

Causality sign France Germany Italy Spain

Causation countries Causality in-variance for ∆β0

Spain (+) 0.0988[*]

UK (+) 0.1193[**]

USA (-) 0.1699[**]

Causation countries Causality in-variance for ∆β1

Germany (-) 0.1618[**]

Spain (+) 0.4843[**]

UK (+) 0.1153[**]

Causation countries Causality in-variance for ∆β2

Germany (+) 0.1578[**]

(-) 0.4539[**] 0.9281[**]

Spain (-) 0.4516[**]

UK (-) 0.0864[**]

Causation countries Causality in-variance for τ

Italy (+) 0.0627[*]

Spain (+) 0.0258[*]

Note: From AIC criterion, we estimate a model with 1-lag. [∗∗] and [∗] mean that the parameter is significant at 1% and 5%

confidence level, respectively.
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linear parameters. With this proposal we obtain results absent of multicollinearity among factors, financial

consistency parameters values, with a high level of adjustment over prices and yiels, at a reduced computa-

tion time (since, it is not necessary to find suitable initial values) and, without problems of heterogeneity

(heteroskedasticity).230

After estimating the parameters that define the behavior of the interest rate curve, we have observed

that, like the most financial variables in high frequency (daily), these show so called stylized facts. As a

result, and from previous studies on asymmetric causality, we adjust such statistical properties and extract

the standardized residuals, on which we test the causality (CCF approach).

On the results of causality in-mean, we emphasize that UK interest rate curve is the most affected by235

the rest, while the least affected is Swiss, as expected to be a control variable. Also we note the relationship

in south of the EMU zone (Italy-Spain). Differentiating by factors, we have found the following drivers

of causality in-mean: for long term are the movements down in the US, for short-term are the upward

in Germany, in the medium-term highlights the relation of EMU area, while the decay factor shows only

causality when decreases.240

As for the results of causality in-variance, they are much less important than in-mean, although the cases

found are also asymmetric. Note that the EMU area shows the highest number of causality relationship

in-variance and, Spain is the main driver, especially when the factors of the curve are upward.
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